STABILITY OF THE SHELL OF A METAL CYLINDRICAL TANK UNDER THE INFLUENCE OF VACUUM

Authors

  • Vladimir O. Popov Vinnytsia National Technical University
  • Denys M. Baida State University «Zhytomyr Polytechnic» https://orcid.org/0009-0004-0004-377X
  • Olena S. Baranetska Vinnytsia National Technical University
  • Kateryna P. Kryklyva Utility Company “Zhytomyrvodokanal”

DOI:

https://doi.org/10.31649/2311-1429-2024-1-14-23

Keywords:

tank, petroleum products, stress-strain state, vacuum, geometry defects.

Abstract

In the paper have been justified the possibility of repurposing large-sized hermetic tanks of chemical production, which is in a state of idleness, for the storage and transshipment of petroleum products. Have been considered the solution of an important scientific problem of the development of methods of finite-element modeling of the stress-strain state of tanks structures for the storage of liquid petroleum products under the influence of vacuum which can occur during their emergency emptying. Detailed modeling of the stress-strain state of the tanks have been performed on the example of a tank with a volume of 20,000 m3, built in conditions of potentially increased seismic activity. Have been given the main results of the inspection of the structure, including the measurement of geometric deviations from the project, which were acquired during long-term operation. Have been described defects and damage that occurred at various stages of the structures life cycle, including the data from measurements of losses of metal structures from corrosion. Have been identified possible forms of loss of structure stability for an idealized model of a cylindrical structure and for a model of a structure with geometry defects. Have been taken into account the specified imperfections of the tanks geometry and corrosion reduction of the wall thickness in the modeling. Have been determined the coefficients of the reserve of stability and have been revealed the effect of reducing the margin of stability with significant of the forms distortion.

Has been clarified the location of the most stressed and overloaded areas, which were identified at the previous analytical stages of research. Have been proven that the spherical frame roof of the structure cannot withstand the design loads from the vacuum 50 mm water column due to possible co-directional snow impact on the roof, not taken into account by the soviet designers. It is emphasized that the largest deformations of the structures, and also, the initialization of the initial distortions of areas that may lose stability, occurs in the area of detected geometry defects. Have been confirmed the results of the analytical determination of the permissible vacuum limit, which the construction structures of the tank can still withstand. The calculated program value of negative pressure, at which there are no signs of loss of stability, have been recommended to be entered into the technical regulations for the operation of the structure as a limit.

Author Biographies

Vladimir O. Popov , Vinnytsia National Technical University

Ph.D. Docent of department of civil engineering, architecture and municipal economy, Faculty of Construction, Civil and Environmental Engineering

Denys M. Baida , State University «Zhytomyr Polytechnic»

Ph.D., Docent of department of Mining Technologies and Construction named after Prof. Bakka M.T., Faculty of Mining, Nature Management and Construction

Olena S. Baranetska , Vinnytsia National Technical University

bachelor of civil engineering, specialist of the center for ensuring the quality of education

Kateryna P. Kryklyva , Utility Company “Zhytomyrvodokanal”

Utility Company “Zhytomyrvodokanal”, engineer of the department for the development and modernization of production, master of construction

References

Popov V.O., Popova A.V. Analitychne modelyuvannya napruzheno-deformovanoho stanu rezervuaru dlya zberihannya metanolu ob'yemom 20000 m3 vid tekhnolohichnykh ta klimatychnykh vplyviv. Suchasni tekhnolohiyi, materialy i konstruktsiyi v budivnytstvi. Naukovo-tekhnichnyy zbirnyk. Vinnytsya, VNTU, 2021-1. S. 87-98.

Popov V.O., Voytsekhivsʹkyy O.V., Kryklyva K.P. Seysmostiykistʹ velykorozmirnoho rezervuaru dlya zberihannya metanolu. Suchasni tekhnolohiyi, materialy i konstruktsiyi v budivnytstvi. Naukovo-tekhnichnyy zbirnyk. Vinnytsya, VNTU, 2023-1. S. 5 – 19.

Popov V. O. Optymizatsiya ekspluatatsiynykh parametriv isnuyuchykh vertykalʹnykh metalevykh tsylindrychnykh rezervuariv [Elektronnyy resurs] / V. O. Popov, K. P. Kryklyva // Materialy LII naukovo-tekhnichnoyi konferentsiyi pidrozdiliv VNTU : Zbirnyk dopovidey, Vinnytsya, 14-23 bereznya 2023 r. – Elektron. tekst. dani. – 2023. C. 1343 – 1345. – Rezhym dostupu: https://conferences.vntu.edu.ua/index.php/all-fbtegp/all-fbtegp-2023/paper/view/17453.

Bayda D.M., Sazonova I.R. Osoblyvosti rozrakhunku stalevoho rezervuaru pry diyi seysmichnykh vplyviv. Budivnytstvo v seysmichnykh rayonakh Ukrayiny. Budivelʹni konstruktsiyi: Mizhvidomchiy naukovo-tekhnichnyy zbirnyk naukovykh pratsʹ (budivnytstvo) / DP «DNDIBK». – Vypusk 76. – K., 2012. – S. 154–159.

DBN V.1.1.12:2014. Zakhyst vid nebezpechnykh heolohichnykh protsesiv, shkidlyvykh ekspluatatsiynykh vplyviv, vid pozhezhi. Budivnytstvo v seysmichnykh rayonakh Ukrayiny. Vved. Z 1.10.2014 r. na zaminu DBN V.1.1.12:2006. K.: Minrehion Ukrayiny, 2014 – 110 s.

DBN V.1.2-14-2009. Zahalʹni pryntsypy zabezpechennya nadiynosti ta konstruktyvnoyi bezpeky budivelʹ, sporud, budivelʹnykh konstruktsiy ta osnov. K.: Minbud Ukrayiny, 2009. – 37 s. – (Derzhavni budivelʹni normy Ukrayiny).

DSTU 8855:2019 Budivli ta sporudy. Vyznachennya klasu naslidkiv (vidpovidalʹnosti). [Na zaminu DSTU -N B V.1.2-16:2013] Kyyiv, Tekhnichnyy komitet standartyzatsiyi «Ekspertyza mistobudivnoyi ta proektnoyi dokumentatsiyi na budivnytstvo», 2019 – 13 s. – (Natsionalʹnyy standart Ukrayiny).

VBN V.2.2-58.2-94. Rezervuary vertykalʹni stalevi dlya zberihannya nafty i naftoproduktiv z tyskom nasychenykh pariv ne vyshche 93,3 kPa. / Derzhkomnaftohaz. – K.: Ukrnaftoprodukt, 1994. – 98 s. – (Vidomchi budivelʹni normy Ukrayiny).

DBN V.1.2-:2006. Navantazhennya i vplyvy. Normy proektuvannya. [Na zaminu SNyP 2.01.07-85 (krim rozdilu 10)]. [Chynnyy vid 2007-01-01] – K. : Minbud Ukrayiny, 2006. – 71 s. – (Derzhavni budivelʹni normy Ukrayiny).

DBN V.2.6-168:2014. Stalevi konstruktsiyi. Normy proektuvannya. Na zaminu DBN V.2.6-163:2010 u chastyni rozdilu 1 ta DSTU B V.2.6-194:2013. [Data nadannya chynnosti 01.01.2015 r.] – K.: Minrehion Ukrayiny, 2014. – 199 s. – (Natsionalʹnyy standart Ukrayiny).

DSTU B V.1.2-3:2006. Prohyny i peremishchennya. Vymohy proektuvannya. Vved. Z 1 sichnya 2007 r. na zaminu rozdilu 10 SNyP 2.01.07-85. K.: Minbud Ukrayiny, 2006. – 10 s. – (Natsionalʹnyy standart Ukrayiny).

Downloads

Abstract views: 0

Published

2024-08-06

How to Cite

[1]
V. O. . Popov, D. M. . Baida, O. S. . Baranetska, and K. P. . Kryklyva, “STABILITY OF THE SHELL OF A METAL CYLINDRICAL TANK UNDER THE INFLUENCE OF VACUUM”, СучТехнБудів, vol. 36, no. 1, pp. 14–23, Aug. 2024.

Issue

Section

BUILDING CONSTRUCTION

Metrics

Downloads

Download data is not yet available.