SIMULATION OF THE STRESS-STRAIN STATE OF THIN-WALLED POLYCARBONATE DOMES FOR RATIONAL DESIGN
DOI:
https://doi.org/10.31649/2311-1429-2022-2-72-84Keywords:
geodesic dome, monolithic polycarbonate, stress-strain state, climatic influences, meridional and ring stresses, loose of stabilityAbstract
The paper contains the further developed of method for calculating thin-walled dome systems without a stationary foundation. Have been carried out the detailed analysis of the fundamental design solutions for frameless collapsible spherical polycarbonate domes, which are used by modern world manufacturers of these structures. Have been done a brief description of the momentless theory of the operation of spherical shells, which is adapted for polycarbonate domes. Have been considered a simplified analytical model of the stress-strain state of a spherical shell with an equatorial diameter of up to 5 m under the influence of climatic influences for the subsequent verification of detailed models. Have been developed highly detailed finite element models of domes of different sizes, taking into account technological openings and structural stiffeners (support ring and door frame) under the wind, snow, ice loads and under other climatic influences. Have been identified the fragments with the highest stresses from various loads and forms of the deformation of the structure.
Have been considered separately the issues related to the loss of shape stability, position and balance of a thin-walled spherical shell, as a light temporary structure. Have been proven that the worst influence on the dome structures is the wind influence, based on the stability criterion. Have been determined the estimated value of the aerodynamic lifting force from wind effects on the dome. Have been proven that the lifting force far exceeds the stabilizing force of the weight of a thin-walled dome. Have been revealed with the help of the performed calculations, it was that a frameless spherical polycarbonate dome inevitably loses its balance stability due to the action of wind loads and requires unfastening with anchors. Have been proposed a rational method for anchoring dome structures at temporary earthen construction sites using geo-screws or metal screw piles. Have been revealed the addiction between the radius of curvature of a spherical dome and the rational thickness of polycarbonate based on the criteria of stiffness and strength. Have been formulated the constructive recommendations regarding the rational design of polycarbonate dome systems. Have been developed the technological regulations for the further safe operation of domes, and have been outlined the directions for further scientific research on this topic.
References
DBN V.2.6-220:2017. Pokryttya budivelʹ i sporud. [Chynnyy vid 2018-01-01].– K.: Minrehion Ukrayiny, 2017. – 43 s. – (Natsionalʹni standarty Ukrayiny).
Homon S.S. H64 Konstruktsiyi iz dereva ta plastmas. Navchalʹnyy posibnyk. – Rivne: NUVHP, 2016. – 219 s.
Belenya E.Y., Henyev A.N., Baldyn V.A. Metallycheskye konstruktsyy. Ucheb. dlya vuzov / Pod obshch. red. E.Y. Belenya.– M.: Stroyyzdat, 1976. – S. 463 – 469.
Savelʹev V.A. Teoretycheskye osnovy proektyrovanyya metallycheskykh kupolov: Dys… dokt. tekhn. nauk. − Moskva, 1995. − 439 s.
DBN V.2.6-168:2014. Stalevi konstruktsiyi. Normy proektuvannya. Na zaminu DBN V.2.6-163:2010 u chastyni rozdilu 1 ta DSTU B V.2.6-194:2013. [Data nadannya chynnosti 01.01.2015 r.] – K.: Minrehion Ukrayiny, 2014. – 199 s. – (Natsionalʹnyy standart Ukrayiny).
DSTU EN 16153:2019. Lysty svitlopronykni plaski bahatosharovi z polikarbonatu (PC) dlya vnutrishnʹoho ta zovnishnʹoho zastosuvannya dlya pokrivelʹ, stin i stelʹ. Vymohy ta metody vyprobuvannya / Light transmitting flat multiwall polycarbonate (PC) sheets for internal and external use in roofs, walls and ceilings — Requirements and test methods. Pryynyato yak natsionalʹnyy standart metodom pidtverdzhennya za poznachennyam: [Chynnyy vid 2020-01-01] – 69 s.
Osnovy teoriyi plastyn ta obolonok z elementamy mahnitopruzhnosti : pidruchnyk / YA. M. Hryhorenko, L. V. Molʹchenko. – K.: Vydavnycho-polihrafichnyy tsentr "Kyyivsʹkyy universytet", 2009. – 403 s.
DBN V.1.2-14-2018. Zahalʹni pryntsypy zabezpechennya nadiynosti ta konstruktyvnoyi bezpeky budivelʹ i sporud: [Chynnyy vid 2019-01-01]. – K., Minrehion Ukrayiny, 2018. – 30 s. – (Natsionalʹni standarty Ukrayiny).
DBN V.1.2-:2006. Navantazhennya i vplyvy. Normy proektuvannya. [Na zaminu SNyP 2.01.07-85 (krim rozdilu 10)]. [Chynnyy vid 2007-01-01] – K. : Minbud Ukrayiny, 2006. – 71 s. – (Derzhavni budivelʹni normy Ukrayiny).
DSTU B V.1.2-3:2006. Prohyny i peremishchennya. Vymohy proektuvannya. Vved. Z 1 sichnya 2007 r. na zaminu rozdilu 10 SNyP 2.01.07-85. K.: Minbud Ukrayiny, 2006. – 10 s.
Popov V.O., Koshivsʹkyy O.S. Rozroblennya skincheno-elementnoyi modeli napruzheno-deformovanoho stanu kupolu z umov optymalʹnoho proektuvannya. Suchasni tekhnolohiyi, materialy i konstruktsiyi v budivnytstvi. Naukovo-tekhnichnyy zbirnyk. Vinnytsya, VNTU, 2012-1. S. 11 – 15.
Downloads
-
PDF (Українська)
Downloads: 0